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ABSTRACT
The use of cross-scheme fully homomorphic encryption (FHE) in
privacy-preserving applications present to be a new challenge to
hardware accelerator design. Existing accelerator architectures with
customized polynomial-level operator abstraction fail to efficiently
handle hybrid FHE schemes due to the mismatch between compu-
tational demands and available hardware resources under various
parameter settings. In this work, we propose a new accelerator ar-
chitecture that consists of a novel finer-grained low-level operator,
i.e., Meta-OP, that not only mathematically supports a diverse range
of polynomial operations, but is also hardware-friendly for accel-
erator design without complex topological logic. We then design
a new slot-based data management scheme to efficiently handle
the distinct memory access patterns over the Meta-OP. With a slot-
based data management approach, Alchemist can accelerate both
arithmetic and logic FHE workloads with high hardware utilization
rates. In the experiment, we show that Alchemist is up to 24,829×
faster than CPU. For arithmetic FHE, compared with the SOTA
ASIC accelerators, Alchemist achieves a 29.4× performance per
area improvement on average. For logic FHE, compared with the
SOTA ASIC accelerators, Alchemist achieves a 7.0× overall speed
up on average.
1 INTRODUCTION
Fully homomorphic encryption (FHE) enables computations to be
carried directly on encrypted data, serving as a crucial solution for
privacy-preserving computations [1]. Existing FHE schemes can
be roughly classified into two categories: arithmetic FHE (such as
BFV [2], CKKS [3]) and logic FHE (such as TFHE [4]). Arithmetic
FHE schemes enable efficient SIMD-style homomorphic arithmetic
operations (e.g., addition and multiplication) by packing multiple
plaintexts into a single ciphertext, but are not good at handling
non-polynomial functions, like comparison, min/max, and division.
In contrast, logic FHE schemes support arbitrary functions rep-
resented as boolean circuits by programmable bootstrapping but
become extremely inefficient when dealing with large-scale mul-
tiplication and addition operations. How to utilize the advantage
of both arithmetic and logic schemes is important to enhance the
performance and security of secure computations [5]. The recent
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trending development of algorithm tools that allow for ciphertext
switching between two schemes takes advantage of hybrid schemes
and improves privacy computation performance [6].

Although from a mathematical perspective, both arithmetic and
logic FHE schemes are built upon similar polynomial operators
such as number theoretic transform (NTT), RNS Basis conversion
(Bconv), decomposed polynomial multiplication (DecompPolyMult,
involves the accumulation of decomposed ciphertext multiplied by
evaluation key (evk) polynomials), it is still challenging to support
cross-schemes FHE acceleration with high hardware efficiency on
an architecture level, mainly due to the following reasons: 1) The
ciphertext operations and parameter space of the two schemes dif-
fers significantly (ciphertext size differences between these two
schemes may span over 1000× [3, 4]), which leads to different com-
puting requirements under diverse architecture behavior. 2) The
NTT, Bconv and DecompPolyMult operators and their proportions
in FHE computations vary significantly. Taking CKKS and TFHE
with different parameter sets as examples in Figure 1, the propor-
tion of NTT, Bconv, and DecompPolyMult in different schemes
exhibit distinct distributions. Even within CKKS, there are notable
variations in the proportions of the three operators for different
multiplication depths of the ciphertext.
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Figure 1: Operator ratio in the algorithmand the overall hardware uti-
lization of different accelerators. TFHE-PBS is TFHE programmable
bootstrapping. Cmult-L=n and BSP-L=n are CKKS ciphertext multi-
plication and bootstrapping with level 𝑛. BSP-L=n+ refers to Boot-
strapping using Modup hoisting.

Subsequently, the key challenge faced by existing ASIC accelera-
tors [7–11] still is maintaining high hardware utilization rates over
various sets of cross-scheme FHE workloads. As shown in Figure 1,
since different FHE schemes have divergent high-level operator
invocation behaviors and distinct data access patterns, none of the
existing ASIC designs can simultaneously achieves high hardware
utilization rates overall workload benchmarks. In particular, the
varying proportions of NTT, Bconv, and DecompPolyMult of TFHE
and CKKS frequently result in a mismatch between computational
workload and available hardware resources in existing accelerator
designs, causing low hardware utilization rates and inadequate
acceleration efficacy.

To this end, we propose Alchemist, a unified accelerator architec-
ture for cross-scheme FHE workloads. To design a unified architec-
ture that meets various FHE workload demands, we first extract a
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key low-level operator, Meta-OP, that can mathematically represent
all high-level polynomial operators while being hardware-friendly
for architectural integration. Next, by proposing a new datamanage-
ment procedure, we are able to eliminate runtime data exchanges
between the Meta-OPs, enabling highly parallelized hardware pro-
cessing units to be designed. Finally, we integrate such process units
into the unified Alchemist architecture alongside the specialized
data management procedure. Consequently, as depicted in Figure 1,
Alchemist is able to keep high utilization rate across workloads
that adopts different FHE schemes. In fact, our accelerator even
achieves a higher utilization rate than the operator-based spatial-
multiplexing accelerator designed specifically for the FHEworkload.
The main reason is that such workloads induce a large number of
data dependencies, which lead to underutilization of computational
resources even in specialized accelerator designs [8, 10, 11]. The
main contributions are summarized as follows:
• We identify Meta-OP as the fundamental building block for effi-
cient FHE accelerator design. Meta-OP is finer-grained operator
abstraction that is both mathematically complete and hardware
friendly.

• We propose the Alchemist architecture design to accelerate Meta-
OP and efficiently handle the distinct memory access patterns of
Meta-OP. With a slot-based data partitioning strategy, Alchemist
supports both arithmetic and logic FHE schemes with high hard-
ware utilization rates.

• Our comprehensive evaluation of Alchemist demonstrates that
our design achieves an average performance improvement of
more than 7.0× compared to existing designs for arithmetic and
logical FHE schemes.

2 BACKGROUND
2.1 Notation
The symbols used in this work and the corresponding definition
are shown in Table 1.

Table 1: Symbols and notions in this paper.
Symbol Definition Scheme

𝑄 (Prime) moduli product
∏𝐿−1
𝑖=0 𝑞𝑖 arithmetic

𝑃 Special (prime) moduli product
∏𝐾−1
𝑖=0 𝑝𝑖 arithmetic

𝐿 Maximum (multiplicative) level arithmetic
𝐾 Number of special moduli arithmetic
𝑁 Degree of a polynomial both

dnum,𝑙𝑏 Decomposition number in CKKS, TFHE both
𝑞 (Prime) moduli both

𝑀,𝐴, 𝑅 Mult, Add, Reduction operators both

2.2 Operators in Arithmetic and Logic FHE
Both arithmetic FHE and logic FHE rely on underlying polynomial
operations. In arithmetic FHE, taking CKKS as an example, the
core operations include NTT, Bconv, Modup/down utilizing Bconv,
as well as modular multiplication and addition. The polynomial
lengths typically range between 210 and 216, depending on the pa-
rameter settings for specific applications. In contrast, logic FHE,
exemplified by TFHE, primarily involves NTT, modular multiplica-
tion, and modular addition operations. The polynomial lengths are
typically set at 210, 211, 214.

Residue Number System (RNS): In arithmetic FHE, RNS de-
composition is used to split ciphertext polynomials with larger
modulus 𝑄 in 100s or even 1000s of bits into parallel channels with

smaller moduli 𝑞𝑖 . As a result, Modup/down operations in arith-
metic FHE involve plenty of RNS Bconv. Equation (1) describes the
RNS Bconv, generating a new channel with the modulus of 𝑝 𝑗 from
modulus 𝑄 .

Bconv( [𝑥 ]𝑄 , 𝑝 𝑗 ) : [𝑥 ]𝑝 𝑗
= (

𝐿−1∑︁
𝑖=0

[ [𝑥 ]𝑞𝑖 · 𝑞
−1
𝑖 ]𝑞𝑖 · 𝑞𝑖 ) mod 𝑝 𝑗 (1)

Utilizing Bconv in equation (1), equations (2) and (3) depict the
process of Modup from modulus 𝑄 to the modulus 𝑄 · 𝑃 , and Mod-
down from the modulus 𝑄 · 𝑃 space to 𝑄 , respectively.

Modup( [𝑥 ]𝑄 ,𝑄 · 𝑃 ) : [𝑥 ]𝑝 𝑗
= Bconv( [𝑥 ]𝑄 , 𝑝 𝑗 ), 𝑗 ∈ [0, 𝐾 ) . (2)

Moddown( [𝑥 ]𝑄 ·𝑃 ,𝑄 ) :
[𝑥 ]𝑞𝑖 = ( [𝑥 ]𝑞𝑖 − Bconv( [𝑥 ]𝑃 , 𝑞𝑖 ) ) · 𝑃−1 mod 𝑞𝑖 , 𝑖 ∈ [0, 𝐿) .

(3)

Number Theoretic Transform (NTT): NTT is utilized to re-
duce the complexity of polynomial multiplication from 𝑂 (𝑛2) to
𝑂 (𝑛 · log𝑛). The computation in NTT involves butterfly operations
of 𝑎0 = (𝑎0 + 𝑎1 ·𝜔) mod 𝑞 and 𝑎1 = (𝑎0 − 𝑎1 ·𝜔) mod 𝑞 where 𝑎0
and 𝑎1 are polynomial coefficients and 𝜔 is a pre-computed input.

Decomposed polynomialmultiplication (DecompPolyMult):
DecompPolyMult denotes the procedure of accumulating the de-
composed ciphertext multiplied by evaluation key (evk) polynomi-
als. More details can be found in [3, 4].

Modular reduction: FHE ciphertexts are built upon polynomial
rings, where the results of addition and multiplication need to be
reduced into [0, 𝑞). The modular reduction of addition is performed
as 𝑎 + 𝑏 = (𝑎 + 𝑏 ≥ 𝑞)?(𝑎 + 𝑏 − 𝑞) : (𝑎 + 𝑏). For multiplications, fast
modular reduction like Barrett modular reduction [12] is employed,
incorporating a dataflow where 2 multiplications are included.

2.3 Related Works
Accelerators for arithmetic FHE schemes: Recently, FPGA
accelerators have been proposed [13–15] and provide a speedup
of several hundreds of times compared to CPU. ASIC accelerator
designs first target a smaller parameter set [7] and later designs
scaled to larger parameter sets [8–10], achieving thousands of per-
formance improvements compared to CPU. More recently, [11]
searched for a better RNS word size, 36 bit, achieving the fastest
computation speed (we adopt this finding in our design). Moreover,
a hardware-agnostic scheduling algorithm was proposed in [16].

Accelerators for logic FHE schemes: To speed up logic FHE
computation, AISC architectures are proposed in [17, 18]. They
achieve about 1𝑘× throughput improvements over CPU.

As analyzed before, existing accelerators utilize a modularized
design approach and have limitations in supporting FHE schemes
with varying ratios of different operations.

Although this work is based on the existing memory production
processes, some recent works use processing-in-memory (PIM) to
improve cryptographic computation speeds. For example, Zhang
et al. proposed the first MRAM-based PIM accelerator for LPN
cryptography [19]. The PIM-LPN architecture can carry out the
entire computations of LPN in memory with zero bit error rate, and
achieve about 20× to 200× performance improvement than existing
CPU and FPGA implementations.

3 ALCHEMIST OVERVIEW
The overview of our solution is depicted in Figure 2. To efficiently
support computations of both arithmetic and logic FHE schemes,
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Figure 2: The overview of Alchemist.

we incorporate an OP layer between the computation and hardware
layers, rather than directly modularizing the hardware design for
different polynomial computations.

At the OP layer, we extract a Meta-OP with dynamic param-
eters and three customized access patterns for diverse polyno-
mial computations and the huge parameter space of the two FHE
schemes: NTT with polynomial length 𝑁 ∈ [210, 216], Decomp-
PolyMult with decomposition number 𝑙𝑏 = 2, 3, 4 in TFHE and
𝑑𝑛𝑢𝑚 = 1, 2, 3 · · · in CKKS, and Modup/down with number of
input channels 𝐿 = 1, 2, 3, · · · and number of output channels
𝐾 = 1, 2, 3, · · · . By using theMeta-OP in conjunction with three data
access patterns, we can support computations for all FHE schemes.
Next, at the hardware layer, we design unified computation cores
together with dataflow control to support Meta-OP with dynamic
parameters. We employ a unified and efficient data management
that supports all three memory access patterns.

4 META-OP EXTRACTION
4.1 Challenge and Meta-OP Extraction
The NTT, Modup/down, and DecompPolyMult share the same op-
erator space of addition, multiplication, and reduction. However,
they have distinct invocation orders, and their parameter settings
differ significantly. In Figure 3, we represent these operations as a
function 𝐹 that includes operations multiplication 𝑀 , addition 𝐴,
reduction 𝑅, order𝑂 , and parameter 𝑃 . We adjust the order𝑂 while
ensuring the correctness, and then extract a Meta-OP, denoted as
(𝑀𝑗𝐴 𝑗 )𝑛𝑅 𝑗 . In (𝑀𝑗𝐴 𝑗 )𝑛𝑅 𝑗 , 𝑗 multiplications and 𝑗 additions are
repeated for 𝑛 times, the accumulated results are then reduced, as
shown in Figure 3. Within (𝑀𝑗𝐴 𝑗 )𝑛𝑅 𝑗 , 𝑛 and 𝑗 are determined by
the parameter 𝑃 of diverse operators. 𝑛 is a dynamically adjustable
parameter during runtime according to the operation flow, while 𝑗
is a static parameter, indicating the degree of parallelism of a single
Meta-OP. Through an exploration of the design space, we have
discovered that setting 𝑗 = 8 is efficient.

NTT
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Figure 3: Extraction of the Meta-OP.
This Meta-OP can support all operations across the two FHE

schemes and leads to low multiplication complexity and high hard-
ware utilization. Next, we demonstrate the utilization of Meta-OP
to perform different polynomial computations

4.2 Polynomial Operations Using Meta-OP
DecompPolyMult: For the DecompPolyMult, Figure 4(a) illus-
trates the distinct processes of the original operation and the equiv-
alent transformation using (𝑀𝑗𝐴 𝑗 )𝑛𝑅 𝑗 where 𝑛 is the decompo-
sition number of the ciphertext. Using Meta-OP (𝑀𝑗𝐴 𝑗 )𝑛𝑅 𝑗 , the

reduction in DecompPolyMult is postponed to the result of the
accumulated multiplication product as shown in Figure 4(a).

Table 2 lists the equation and the multiplication overhead of
the original operation and the equivalent transformation for de-
composition number bing 𝑑𝑛𝑢𝑚. As shown in Table 2, with using
the Meta-OP, the number of multiplication is reduced by up to 3×
due to the decrease of the number of reduction. Such an adjust-
ment would result in doubling the size of the modular addition, but
this is minuscule compared to the large savings in multiplication
overhead.

Table 2: Transformation of DecompPolyMult.
Diagram Equation #Mults
Origin

∑𝑑𝑛𝑢𝑚
𝑖=1 (Reduce𝑞 (𝑎𝑖 · 𝑏𝑖 )) 3 · 𝑑𝑛𝑢𝑚 · 𝑁

(𝑀𝑗𝐴 𝑗 )𝑑𝑛𝑢𝑚𝑅 𝑗 Reduce𝑞 (
∑𝑑𝑛𝑢𝑚
𝑖=1 (𝑎𝑖 · 𝑏𝑖 )) (𝑑𝑛𝑢𝑚 + 2) · 𝑁

In (𝑀𝑗𝐴 𝑗 )𝑛𝑅 𝑗 for DecompPolyMult, the accumulative products
come from different “dnum groups”. Meanwhile, using Meta-OP
(𝑀𝑗𝐴 𝑗 )𝑑𝑛𝑢𝑚𝑅 𝑗 for DecompPolyMult, a high utilization rate can be
achieved as long as 𝑗 can divide 𝑁 (𝑁 is a power of 2).

Modup/down: Similarly, we apply theMeta-OP toModup/down.
In Figure 4(b), we demonstrate the transformation using modup
with 𝐿 = 2 and𝐾 = 2 as an example. As shown in Figure 4(b), modup
can be divided into two steps: in step 1, the computation of 𝑎𝑞 is
performed independently in each channel, and in step 2, for each
target channel, all 𝐿 𝑎𝑞s are multiplicated by the constants, reduced
and aggregated. Using our Meta-OP (𝑀𝑗𝐴 𝑗 )𝐿𝑅 𝑗 , the number of
reductions in the aggregation of the modular product is decreased.
The general equation of the transformation of Modup is listed in
Table 3. During the Modup/down computing, a high utilization rate
can be achieved as long as 𝑗 can divide 𝑁 .

Table 3: Transformation of Modup.
Diagram Equation #Mults
Origin 𝑎𝑞−1

𝑖
= Reduce𝑞𝑖 (𝑎 · 𝑞−1𝑖 ), 𝑖 ∈ [0, 𝐿) (3𝐾 · 𝐿 + 3𝐿) · 𝑁∑𝐿−1

𝑖=0 Reduce𝑝 𝑗 (𝑎𝑞−1𝑖 · 𝑞𝑖 ), 𝑗 ∈ [0, 𝐾)
𝑎𝑞−1
𝑖

= Reduce𝑞𝑖 (𝑎 · 𝑞−1𝑖 ), 𝑖 ∈ [0, 𝐿) (𝐾 · 𝐿 + 3𝐿 + 2𝑀) · 𝑁
(𝑀𝑗𝐴 𝑗 )𝐿𝑅 𝑗 Reduce𝑝 𝑗 (

∑𝐿−1
𝑖=0 (𝑎𝑞−1

𝑖
· 𝑞𝑖 )), 𝑗 ∈ [0, 𝐾)

NTT: For NTT operation, we perform the radix-𝑟 butterfly op-
eration using (𝑀𝑗𝐴 𝑗 )3𝑅 𝑗 Meta-OP. We illustrate the process in
Figure 4(c). As shown in Figure 4(c), all 8 results of the the radix-8
butterfly are composed of three parts: products of 𝑎7 and 𝑎6 with
twiddle factor (in red box), products of 𝑎5 and 𝑎4 with twiddle fac-
tor (in yellow box), and products of 𝑎3 to 𝑎0 with twiddle factor
in blue box). We compute each multiplication in the red, yellow
and blue boxes and added them to get each result using a Meta-
OP(𝑀8𝐴8)3𝑅8. This computation requires 3×8 = 24multiplications
and 8 reductions, totaling 40 multiplications. Compared to the origi-
nal NTT that requires 12×3 = 36multiplications, only causes a 10%
multiplication increase. It is worth highlighting that directly unfold-
ing the iterative NTT would lead to a several times multiplication
penalty. However, by leveraging our Meta-OP, which reduces the
number of reductions, we have successfully minimized the penalty
of multiplication overhead to only 10%. In addition, to support all
possible polynomial lengths 𝑁 , we also use the Meta-OP to perform
the radix-4 butterfly in a similar way.

Regarding the parameter 𝑗 , using 16, 32 or other values greater
than 8 that divide 𝑁 would result in low utilization for NTT com-
putation. Therefore, we fix 𝑗 to 8, ensuring high utilization across
all operations in FHE. In addition, we summarize the three kinds

3
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of data access patterns required by our Meta-OP for NTT, Modup/-
down, and DecompPolyMult in Table 4.

The main significance of using the Meta-OP to support FHE
operations lies in the elimination of the need for dedicated com-
puting modules. Meanwhile, as for the multiplication, our further
experiments indicate that using this Meta-OP does not increase but
reduces the overall multiplication overhead. It is because although
there is a slight multiplication increase in NTT, the number of mul-
tiplications in Modup/down and DecompPolyMult is significantly
decreased.

Table 4: Data access pattern of the three operations.
Access pattern

Computation Slots Channel Dnum_group
(I)NTT ✓ – –
DecompPolyMult – – ✓
Modup/down – ✓ –

5 UNIFIED HARDWARE DESIGN
5.1 Challenge and Overall Architecture
The primary challenges in hardware design stem from the conflicts
between diverse parameter𝑛 and three access pattern of (𝑀8𝐴8)𝑛𝑅8
for diverse applications, and the efficiency of the hardware design.

To support the Meta-OP for different applications with a high
hardware utilization, we designed a unified core composed of mul-
tiplication and addition arrays and decompose the reduction opera-
tion into multiplications and additions. To accommodate the three
different memory access patterns required for Meta-OP, we employ
efficient slot-based data management. We also adopt an on-chip
task scheduling approach that optimizes on-chip caching.

The overall architecture is shown in Figure 5(a). It consists of
128 parallel computing units, a shared memory of 2MB, a transpose
buffer, and a control unit. The 128 parallel computing units are
independent and there is no data exchange between each computing
unit. Within each computing unit, there is a local scratchpad and a
core cluster. Each local scratchpad is sized 512KB, and the total size
of the on-chip scratchpad is 64+2 MB. Each core cluster consists of
16 parallel cores, and each core performs a Meta-OP.

5.2 Unified Core Design
The unified core, as shown in Figure 5(c), consists of a multiplication
array, an addition array, an accumulation array, and a register array.
Each array contains eight corresponding components.

We do not instantiate modular reduction components, instead,
we reuse the mult array and the accumulation array by data flow
control. Figure 5(d) illustrates the spatiotemporal data flow during
the execution of (𝑀8𝐴8)𝑛𝑅8. The entire computation is temporally
divided into two parts: (𝑀8𝐴8)𝑛 (the pink part) and reduction (the
green part). The (𝑀8𝐴8)𝑛 operation requires 𝑛 cycles, and in each
cycle, the multiplication produces 8 results and then accumulates
with the previous results. Specifically, for (𝑀8𝐴8)3 operation in
NTT, results of the 8 multiplications are first passed through an
addition array, which recombines them into 8 intermediate results
and then accumulated with the previous results. The reduction
operation is achieved by reusing the multiplication array as shown
in the green part in Figure 5(d), which takes 2 cycles. In total, it
takes 𝑛 + 2 cycles for the unified core for each Meta-OP (𝑀8𝐴8)𝑛𝑅8.
During the whole process, the utilization of the core remains high.

5.3 Data Management
To efficiently accommodate the diverse memory access require-
ments of NTT, Modup/down, and DecompPolyMult, we use a slot-
based data partition and employ a 4-step NTT to maximize data
locality. This data organization approach eliminates the need for
data exchange between computing units.

Slot-based data partioning: We distribute all polynomials
across different computing units by slot. Each unit’s local SRAM
stores the same slots for all channels of all dnum groups. Figure 5(b)
illustrates the data allocation in the local SRAMs, taking the example
of 𝑁 = 16384. For each channel of every dnum group, polynomial
slots 0− 127 are stored in local SRAM 0, polynomial slots 128− 255
are stored in local SRAM 1, and so on. This arrangement ensures
that every channel of every dnum group is stored in each local
SRAM, so the data required for DecompPolyMult and Modup/down
can be accessed within the private local SRAM.

Maximizing data locality: The classical NTT algorithm is
fully connected, which contradicts our slot-based data partition.
Therefore, we adopted the 4-step NTT algorithm to maximize data
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locality during NTT computations. For instance, in the case of
𝑁 = 16384, the 128 × 128 slots of each polynomial are evenly
partitioned into 128 units, and each computing unit stores 128 slots
of each polynomial. Using the 4-step NTT algorithm, the 16384-
point NTT is decomposed into 128 sub-NTTs with each sized 128
point. Therefore, each computing unit runs 128-point NTT and all
the necessary data are located in the private local SRAM.

By employing slot-based data partitioning and the 4-step NTT
algorithm, each core cluster only accesses its own private local
SRAM. This data management enables support for the three mem-
ory access patterns of Meta-OP, without the need for data exchange
between computing units. Consequently, our multi-core accelerator
architecture achieves high efficiency.
5.4 Scheduling and Design Space Exploration
Compared to modularized design, our unified architecture enables
the decoupling of scheduling from the underlying hardware, elim-
inating the concern about the availability of individual modules
and the overall utilization rate. Based on this, we implemented a
time-sharing scheduling strategy similar to [8, 14] to optimize on-
chip storage overhead for cross-scheme FHE computing. Through
experiments on the benchmark with parameter sets as the same as
the latest design [11], in our design, a 64 + 2 MB on-chip SRAM size,
effectively eliminates memory access bottlenecks in FHE tasks.

We also conducted a design space exploration to ensure high
utilization in the cross-scheme FHE, accommodating a wide range
of polynomial lengths 𝑁 , spanning two orders of magnitude. Ac-
cording to the latest findings in [11], we select a word size of 36
bits for the arithmetic FHE. It also has good compatibility with the
TFHE scheme. Ultimately, the current architecture utilizing 128
core clusters was determined.
6 EXPERIMENTAL EVALUATION
6.1 Implementation Results

Table 5: Area breakdown of Alchemist.
Components Area(mm2)
1× Core Cluster (16× CORE) 16 × 0.043
1× Local SRAM 1 × 0.427
1× Computing Unit (Core Cluster + Local SRAM) 1 × 1.118
128× Computing Unit 143.104
Register file for transpose 6.380
Shared memory 1.801
Memory interface (2×HBM2 PHYs) 29.801
Total 181.086

We implemented Alchemist in RTL and synthesized it in a com-
mercial 14nm process technology using Design Compiler. We used
CACTI to model SRAM components. Two HBM2 stacks are utilized,
with a total bandwidth of 1TB/s. The design runs at 1GHz. In total,
Alchemist is sized 181mm2 and consumes 77.9 watts on average.
The area breakdown is listed in Table 5.

We also list the resource usage of the four latest accelerators
specified for arithmetic (AC) or logic (LC) schemes in Table 6. In
Table 6, only our accelerator provides efficient support for both FHE
schemes. Moreover, compared with the latest accelerator specified
for arithmetic FHE, our SRAM consumption is reduced by more
than 60% and the overall area is reduced by more than 50%.
6.2 Evaluation of Benchmarks
To evaluate the performance, we implement a cycle-accurate simu-
lator for Alchemist and test Alchemist with various benchmarks,

Table 6: Rescouces usage in FHE accelerators.
Matcha [17] Stritx [18] CraterLake [10] SHARP [11] Alchemist

(AC, LC) (–,✓) (–,✓) (✓,–) (✓,–) (✓,✓)
Off-chip mem BW 640 GB/S 300 GB/S 2.4 TB/S 1 TB/S 1 TB/S
On-chip mem Cap 4 MB 26 MB 256 MB 180 MB 66 MB
On-chip mem BW / / 84 TB/S 72 TB/S 66 TB/S

Core Freq 2 GHz 1.2 GHz 1 GHz 1 GHz 1 GHz
Area 36.96 141.37 178.8

(14nm-scaled) (33.6) (56.4) 472.3 (379) 181.1

including basic FHE operators, different CKKS applications, and
TFHE programmable bootstrapping.

6.2.1 Basic FHE operators. We present in Table 7 the throughput
of Alchemist for basic operators with 𝑁 = 65536, 𝐿 = 44 and
𝑑𝑛𝑢𝑚 = 4, and compare it with CPU(Intel Xeon Gold 6234@3.3
GHz with a single thread), GPU [20], and FPGA accelerator [15].
The comparison shows that Alchemist accelerates Pmult and Hadd
operations over 20𝑘× compared to the CPU, and speeds up the
Keyswitch, Cmult, and Rotation by over 18𝑘×.

Table 7: Throughput comparison for basic operators.
CPU GPU Poseidon Alchemist Speed up

Pmult 38.14 7,407 14,647 946,970 24,829×
Hadd 35.56 4,807 13,310 710,227 19,973×
Keyswitch 0.4 / 312 7,246 18,115×
Cmult 0.38 57 273 7,143 18,785×
Rotation 0.39 61 302 7,179 18,377×

6.2.2 Benchmark Evaluation. CKKS Applications: For shallow
CKKS applications, we conducted experiments on LoLa-MNIST [21]
with encrypted and unencrypted weights following the latest accel-
erators [7, 10]. As shown in Figure 6, the results demonstrate that
Alchemist achieves over 3× speedup compared to F1. The inference
performance with encrypted weights consumes 0.11 ms.

In deep CKKS applications, we test fully-packed bootstrapping
and 1024-batched HELR using the same benchmark and parame-
ter settings as the latest design [11]. The comparison results are
shown in Figure 6. Alchemist outperforms prior accelerators in
both benchmarks. Compared to prior accelerators, Alchemist per-
forms 18.4× (vs. BTS), 6.1× (vs. ARK), 3.7× (vs. CLAKE+), 2.0× (vs.
SHARP) faster on average across the two applications. Alchemist
also shows significant improvements in the performance per chip
area of about 29.4× on average compared to prior accelerators,
specifically 76.1× (vs. BTS), 28.4× (vs. ARK), 9.4× (vs. CLAKE+),
and 3.79×(vs. SHARP).

TFHEprogrammable bootstrapping:Weevaluated the through-
put of programmable bootstrapping in TFHE with two different
sets of parameters as the same as [18]. The results indicate that we
achieved approximately a 1600× speedup compared to Concrete
(CPU) [22] and a 105× speedup compared to NuFHE (GPU) [23].
Compared with the latest TFHE ASIC accelerators [17, 18], we
achieved comparable performance per chip area and a 7.0× overall
speed up on average.

The experimental results demonstrate that our accelerator effi-
ciently supports cross-scheme FHE computing. Alchemist demon-
strates superior improvement in performance and performance per
chip area compared to prior accelerators.

Complexity and hardware utilization analysis: Our perfor-
mance optimization mainly arises from two factors: 1) the reduction
in computation overhead, and 2) the increased utilization of hard-
ware resources.

Firstly, we evaluate the number of multiplications in diverse
operators in both FHE schemes. The results are shown in Figure 7(a)
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Figure 6: Performance of Alchemist in (a) CKKS applications and (b) TFHE programmable bootstrapping.
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Figure 7: (a) Computation overhead of Cmult and bootstrapping w/
and w/o (𝑀𝑗𝐴𝑗 )𝑛𝑅 𝑗 and (b) comparisons of utilization rates.

and it demonstrates that due to the benefits derived from Bconv and
DecompPolyMult, the overall computation across all applications
has been reduced. The multiplication overhead is decreased by 3.4%,
23.3%, and 37.1% for TFHE programmable bootstrapping, CKKS
Cmult with 𝐿 = 24 and bootstrapping with 𝐿 = 44 using Modup
hoisting.

Secondly, we also evaluate the utilization rates of computational
resources in our accelerator and compare it to SOTA designs [10, 11]
in Figure 7(b). In [11], during the execution of bootstrapping (HELR-
1024), the utilization rates of NTTU, BconvU, and Element-wise
Engine are 0.7 (0.68), 0.26 (0.24), and 0.64 (0.53), respectively, with
an overall utilization rate of about 0.55 (0.52). In contrast, our de-
sign is able to activate the entire on-chip computational resources,
where the utilization rate of our design is roughly 0.85, 0.89, and
0.87 on NTT, Bconv and DecompPolyMult tasks, respectively. With
an overall utilization rate of about 0.86, we are able to achieve an im-
provement of utilization rates by approximately 1.57× (1.66×) over
SHARP [11]. In addition, our design also enjoys the computation
overhead reduction obtained from the unified lazy reduction strat-
egy as described in Table 2, 3 and Figure 7(a). Consequently, in both
the bootstrapping (i.e., boot) and HELR applications, we achieve
overall performance improvements of 1.85× and 2.07× respectively,
when compared to [11]. In addition to [11], [10] also reports its
utilization based on the number of functional units (FUs) that are
actively running. Due to the modularized design, the hardware uti-
lization rates during bootstrapping and MNIST with unencrypted
weights tasks on [10] are 0.42 and 0.38, respectively, which are also
much lower than ours (0.86 and 0.87, resp.).

The above analysis indicates that the improvement of the area-
performance efficiency of Alchemist primarily stems from the ex-
traction ofMeta-OP and the unified architecture design, which leads
to high utilization rates and a decrease in computational overhead.
CONCLUSION
In this work, we propose Alchemist, a unified accelerator architec-
ture that efficiently supports cross-scheme FHE computing. Our key
idea is to extract a finer-grained operator called a Meta-OP which
mathematically represents diverse polynomial operators. Based
on the extracted Meta-OP, our accelerator architecture provides

efficient support for both arithmetic and logic FHE computing with
the scheduling strategy. The experimental results show that our
accelerator achieves a significant speedup compared to existing
designs on both schemes.
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